首页> 外文OA文献 >Automatic Pavement Crack Recognition Based on BP Neural Network
【2h】

Automatic Pavement Crack Recognition Based on BP Neural Network

机译:基于BP神经网络的路面裂缝自动识别。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A feasible pavement crack detection system plays an important role in evaluating the road condition and providing the necessary road maintenance. In this paper, a back propagation neural network (BPNN) is used to recognize pavement cracks from images. To improve the recognition accuracy of the BPNN, a complete framework of image processing is proposed including image preprocessing and crack information extraction. In this framework, the redundant image information is reduced as much as possible and two sets of feature parameters are constructed to classify the crack images. Then a BPNN is adopted to distinguish pavement images between linear and alligator cracks to acquire high recognition accuracy. Besides, the linear cracks can be further classified into transversal and longitudinal cracks according to the direction angle. Finally, the proposed method is evaluated on the data of 400 pavement images obtained by the Automatic Road Analyzer (ARAN) in Northern China and the results show that the proposed method seems to be a powerful tool for pavement crack recognition. The rates of correct classification for alligator, transversal and longitudinal cracks are 97.5%, 100% and 88.0%, respectively. Compared to some previous studies, the method proposed in this paper is effective for all three kinds of cracks and the results are also acceptable for engineering application.
机译:可行的路面裂缝检测系统在评估道路状况和提供必要的道路维护方面起着重要作用。在本文中,反向传播神经网络(BPNN)用于识别图像中的路面裂缝。为了提高BPNN的识别精度,提出了一个完整的图像处理框架,包括图像预处理和裂纹信息提取。在该框架中,尽可能减少了冗余图像信息,并构造了两组特征参数以对裂缝图像进行分类。然后采用BPNN来区分线性裂纹和鳄鱼裂纹的路面图像,从而获得较高的识别精度。此外,根据方向角,线性裂纹可进一步分为横向裂纹和纵向裂纹。最后,对中国北方地区自动道路分析仪(ARAN)获得的400张路面图像数据进行了评估,结果表明,该方法似乎是路面裂缝识别的有力工具。扬子鳄,横向和纵向裂缝的正确分类率分别为97.5%,100%和88.0%。与以前的一些研究相比,本文提出的方法对所有三种裂纹均有效,其结果对于工程应用也是可以接受的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号